skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Segonds, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kibler, B.; Millot, G.; Segonds, P. (Ed.)
    Aluminum nitride is a white, hydrophilic, high-band-gap ceramic. Here we report on the light-induced evaporation of saltwater through a capillary wick composed of drop-cast microparticles. Saltwater evaporation rates are significantly higher than expected. Our results point to significant potential for this interface-driven approach in solar non-thermal desalination and water separation technologies. 
    more » « less
  2. Kibler, B.; Millot, G.; Segonds, P. (Ed.)
    The aluminum nitride bandgap energy matches the binding energy between salt and water molecules. Here we study the effect of 405-nm light on the rates of evaporation when saline solutions are im-bibed within a porous ceramic aluminum nitride wick. Sensitive measurements are taken in a self-referencing setup and compared with the capillary fluid response. Evaporation rates increase with light illumination when the solution is more saline in a manner that indicates interfacial charge-transfer characteristics. Our results show consistent trends and strong potential for photonic environmental applications in salt-water separation 
    more » « less